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Treatment of methicillin-resistant Staphylococcus aureus osteomyelitis requires a prolonged antibiotic ther-
apy with vancomycin. Because of its weak diffusion, the in situ implantation of vancomycin could be interesting.
The activity of vancomycin encapsulated in microparticles was evaluated in vitro and in vivo on rabbit
osteomyelitis and showed a good activity compared to intravenous administration.

Vancomycin is used to treat methicillin-resistant Staphylo-
coccus aureus (MRSA) infections (2, 5, 22). Bone infections
are treated by parenteral administration of vancomycin, but it
does not provide high local bone concentration due to the poor
vascularization of the cortical bone and the low penetration of
this drug. Moreover, this antibiotic presents nephrotoxicity,
ototoxicity, and poor venous tolerance. A decrease of this
systemic toxicity would be resolved by directly implanting an-
tibiotic-loaded biomaterials into the infected bone. Vancomy-
cin cements (1, 12) have proven their efficacy in treating bone
infections, but the release of vancomycin in such associations
was observed over a limited time period. The interest of other
devices (8, 9) lies in the prolonged in situ release of vancomy-
cin over a period of several weeks, avoiding administration by
a central catheter (27, 28, 30). We propose development of a
drug delivery system (DDS) using poly(ε-caprolactone) (PCL)
(11, 14, 15, 17, 33) as the biomaterial with both biodegradable
(24, 25, 29) and prolonged-release properties (18) and good
immune tolerance (20, 21). The aim of this study was first to
check the vancomycin stability in microparticles, to evaluate
the in vitro bactericidal activity of vancomycin encapsulated in
such microparticles, and to compare the in vivo bactericidal
activity of vancomycin incorporated into microparticles to that
of vancomycin administered intravenously on a rabbit model of
osteomyelitis.

Poly(ε-caprolactone) microparticles (Union Carbide SA,
Rungis, France) were prepared using a simple emulsion (oil/
water) technique with one gram of PCL and 250 mg of mi-
cronized vancomycin (Lilly France SA) powder. Results of
laser granulometer analysis showed that microparticles with a
mean diameter of 216.3 � 66.0 �m were obtained.

Microparticles appeared as spherical particles with a riddled
area resembling little craters by scanning electron microscopy.

Microparticle drug loading was indirectly detected in the
external phase by vancomycin chlorhydrate dosage by UV
spectrophotometer, and encapsulation efficiency was calcu-

lated. Microparticles were loaded with 49.6% � 3.6% of van-
comycin (110 mg of vancomycin per g of microparticles).

In vitro studies of vancomycin release from microparticles
were controlled using a previously described dissolution test (7,
10) with 200 mg of microparticles corresponding to approxi-
mately 22.06 mg of loaded vancomycin. The amount of vanco-
mycin released into aqueous solution was first determined by
an high-performance liquid chromatography (HPLC) dosage
(3). The HPLC results are expressed as the mean cumulated
percentage of drug released � standard deviation (SD) as a
function of time. The second dosage method is a microbiolog-
ical assay that permits estimation of the active amount of
vancomycin released during the in vitro dissolution test (19).
Results for vancomycin HPLC and microbiological concentra-
tions were compared using Tukey’s test.

We studied two strains: S. aureus ATCC 25922, susceptible
to methicillin and vancomycin (MSSA), and S. aureus P9, re-
sistant to methicillin but susceptible to vancomycin (MRSA).
MIC of vancomycin was 1 mg/liter for both strains. Bactericidal
activity was studied by producing killing curves with an inocu-
lum of 107 CFU/ml and 2 mg of free vancomycin, 26 mg of
vancomycin-loaded microparticles (i.e., 2.86 mg of vancomy-
cin), and 2 mg of vancomycin added to 26 mg of unloaded
microparticles. Two controls without antibiotic (one with free
microparticles and one without microparticles) were per-
formed. Bacteria counts were realized after 0, 6, 24, and 48 h.

The efficacy of vancomycin microparticles was investigated
in a chronic osteomyelitis rabbit model (23). A corticotomy of
the left superior tibial metaphysis was performed. A hemo-
static compress impregnated with 107 CFU of MSSA or MRSA
strain was implanted in the metaphysis. After 4 days, com-
presses were removed, and a surgical lavage was performed. A
bacterial count (B1) in bone marrow was performed. Before
treatment, the animals were randomly assigned to two groups,
G1 and G2 (five animals per group). In G1, animals received
an 11-day treatment with intravenous vancomycin twice a day
(100 mg/kg/day), corresponding to 30 mg/kg in human. In G2,
40 mg of microparticles containing 4.4 mg of vancomycin was
implanted without any further treatment for 11 days. At the
end of the treatment, animals were sacrificed. A new bacterial
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count (B2) in bone marrow was performed. Bacteria were
expressed in log10 CFU/mg, and the difference of log10

CFU/mg (B1 – B2) was calculated for each animal. The quan-
titative results were expressed as mean � SD. Analysis of
variance (Statview; Abacus Concepts, Berkeley, CA) was used
to compare the effects of the different groups, followed by a
Scheffe test.

The release rate results of vancomycin obtained from HPLC
and microbiological measurements are presented in Fig. 1.
Vancomycin release occurred quickly up to 48 h and then was
stable (P � 0.001). After 21 days, 56.4% of vancomycin was
released from microparticles as evaluated by HPLC and 69.3%
as evaluated by the microbiological test. Vancomycin concen-
trations were significantly higher with microbiological assay
than with HPLC assay (P � 0.08).

Figure 2a (MSSA) and 2b (MRSA) show that the bacteri-
cidal activity of vancomycin dispersed in beads was similar for
the two strains. Unloaded MP did not exhibit any intrinsic
activity against S. aureus strains.

The bacterial count in bone was 6 log10 CFU/mg before
treatment. Decreases (B1 � B2) of 5.00 � 0.5 log10 CFU/mg in
G1 and of 4.10 � 0.5 log10 CFU/mg in G2 were observed after
treatment. The implantation of vancomycin dispersed in mi-
croparticles allowed significant killing in vivo after 11 days, and
no difference between the two groups was observed (P � 0.05).

Treatment of MRSA osteomyelitis always requires a pro-
longed antibiotic therapy at least 6 weeks with vancomycin.
The in situ implantation of antibiotic DDS could be a good
option (18, 26) if the released vancomycin concentration is
superior to the MIC during the first hours and can be main-
tained for several weeks. Vancomycin dispersed in micropar-
ticles showed a good bactericidal activity on the two strains,
similar to that obtained with intravenous vancomycin or van-
comycin added to unloaded microparticles.

This prolonged-release formulation allowed great reduction
of the administered vancomycin dose and would limit the sys-
temic administration and the renal toxicity. The in vivo test was
performed during 11 days. Yenice et al. showed an antibiotic

presence throughout 5 weeks in synovial sample (32). Never-
theless, it will be necessary to check the in vivo biodegradation
of the poly(ε-caprolactone), as this polymer has a very slow
degradation rate (6, 13, 24, 25) and could remain in the im-
plantation site for a period greater than 1 year.

We plan in the future to associate these vancomycin micro-
particles to biphasic calcium phosphate granules (16) dispersed
in a gel to form an injectable bone substitute (4, 31) to combine
osteoconduction properties and therapeutic effects.

This study demonstrates the stability of vancomycin dis-
persed in poly(ε-caprolactone) microparticles and suggests
that this DDS is a suitable vehicle for the delivery of high local
concentrations of vancomycin in an implantation site. Vanco-
mycin biodegradable microparticles could be used in implan-
tation sites to avoid systemic side effects.
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